Grafting of a model protein on lactide and caprolactone based biodegradable films for biomedical applications
نویسندگان
چکیده
Thermoplastic biodegradable polymers displaying elastomeric behavior and mechanical consistency are greatly appreciated for the regeneration of soft tissues and for various medical devices. However, while the selection of a suitable base material is determined by mechanical and biodegradation considerations, it is the surface properties of the biomaterial that are responsible for the biological response. In order to improve the interaction with cells and modulate their behavior, biologically active molecules can be incorporated onto the surface of the material. With this aim, the surface of a lactide and caprolactone based biodegradable elastomeric terpolymer was modified in two stages. First, the biodegradable polymer surface was aminated by atmospheric pressure plasma treatment and second a crosslinker was grafted in order to covalently bind the biomolecule. In this study, albumin was used as a model protein. According to X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), albumin was efficiently immobilized on the surface of the terpolymer, the degree of albumin surface coverage (ΓBSA) reached ~35%. Moreover, gel permeation chromatography (GPC) studies showed that the hydrolytic degradation kinetic of the synthesized polymer was slightly delayed when albumin was grafted. However, the degradation process in the bulk of the material was unaffected, as demonstrated by Fourier transform infrared (FTIR) analyses. Furthermore, XPS analyses showed that the protein was still present on the surface after 28 days of degradation, meaning that the surface modification was stable, and that there had been enough time for the biological environment to interact with the modified material.
منابع مشابه
Synthesis and Characterization of Biodegradable Semi-Interpenetrating Polymer Networks Based on Star-Shaped Copolymers of ɛ-Caprolactone and Lactide
In this paper, the focus is on a new kind of biodegradable semi-interpenetrating polymer networks, which derived from ɛ-caprolactone, lactide, 1,4-butane diisocyanate and ethylenediamine and also its potential has been investigated in soft tissue engineering applications. The polymers were characterized by nuclear magnetic resonance (NMR) spectrometry, fourier transform infrared spectroscopy (F...
متن کاملSynthesis and Characterization of Biodegradable Semi-Interpenetrating Polymer Networks Based on Star-Shaped Copolymers of ɛ-Caprolactone and Lactide
In this paper, the focus is on a new kind of biodegradable semi-interpenetrating polymer networks, which derived from ɛ-caprolactone, lactide, 1,4-butane diisocyanate and ethylenediamine and also its potential has been investigated in soft tissue engineering applications. The polymers were characterized by nuclear magnetic resonance (NMR) spectrometry, fourier transform infrared spectroscopy (F...
متن کاملSynthesis and Characterization of Biodegradable Semi-Interpenetrating Polymer Networks Based on Star-Shaped Copolymers of ɛ-Caprolactone and Lactide
In this paper, the focus is on a new kind of biodegradable semi-interpenetrating polymer networks, which is derived from ɛ-caprolactone, lactide, 1,4-butane diisocyanate and ethylenediamine and also its potential has been investigated in soft tissue engineering applications. The polymers were characterized by nuclear magnetic resonance (NMR) spectrometry, Fourier transform infrared spectroscopy...
متن کاملPoly (Lactic Acid)Nanofibres as Drug Delivery Systems: Opportunities and Challenges
Numerous Scientists have discovered the procedure of nanotechnology, explicitlynanofibers, asdrug delivery systems for transdermal uses. Nanofibers canbe used to deliver drugs and are capable of controlled release for a continued periodof time. Poly (Lactic Acid) (PLA) is the lastly interesting employed synthetic polymer in biomedical application owing to its well categorized biodegradable prop...
متن کاملPreparation of Biodegradable and Elastic Poly(ε-caprolactone-co-lactide) Copolymers and Evaluation as a Localized and Sustained Drug Delivery Carrier
To develop a biodegradable polymer possessing elasticity and flexibility, we synthesized MPEG-b-(PCL-co-PLA) copolymers (PCxLyA), which display specific rates of flexibility and elasticity. We synthesize the PCxLyA copolymers by ring-opening polymerization of ε-caprolactone and l-lactide. PCxLyA copolymers of various compositions were synthesized with 500,000 molecular weight. The PCxLyA copoly...
متن کامل